DNA's Instructions for Insulin

Introduction:

Below are two partial sequences of DNA bases (shown for only one strand of DNA). Sequence 1 is from a human and sequence 2 is from a cow. In both humans and cows, this sequence is part of a set of instructions for controlling the production of a protein. In this case, the sequence contains the gene to make the protein insulin. Insulin is necessary for the uptake of sugar from the blood. Without insulin, a person cannot use digest sugars the same way others can, and they have a disease called diabetes.

Materials: The materials used in this experiment were:

- 1. Paper
- 2. Pencil
- 3. Codon table

Procedure: The procedures used in this experiment were:

- 1. Using the DNA sequence given in table 1, make a complimentary RNA strand for the human.
- 2. Write the RNA directly below the DNA strand [remember to substitute U's for T's in RNA].
- 3. Repeat step 1 for the cow. Write the RNA directly below the DNA strand in table 2.
- 4. Use the codon table in your book/notes to determine what amino acids are assembled to make the insulin protein in both the cow and the human. Write your amino acid chain directly below the RNA sequence.

Data:

Table 1

Sequence 1 Human						
DNA	C C A -T A G -C A C- G T T- A C A- A C G- T G A- A G G- T A A					
RNA						
Amino Acids						

Table 2

Sequence 1 Cow					
DNA	C C G- T A G- C A T -G T T- A C A- A C G- C G A- A G G- C A C				
RNA					
Amino Acids					

Analysis:

- 1. The DNA sequence is different for the cow and the human, but the amino acid chain produced by the sequence is almost the same. How can this happen?
- 2. Diabetes is a disease characterized by the inability to break down sugars. Often a person with diabetes has a defective DNA sequence that codes for the making of the insulin protein. Suppose a person has a mutation in their DNA, and the first triplet for the gene coding for insulin is C C C [instead of C C A].
 - a. Determine what amino acid the new DNA triplet codes for.
 - b. Will this person be diabetic?
- 3. Would the person be diabetic if the first triplet was C A A?
- 4. How is it that a code consisting of only four letters, as in DNA [A, T, G, C] can specify all the different parts of an organism and account for all the diversity of organisms on this planet?
- 5. DNA sequences are often used to determine relationships between organisms. DNA sequences that code for a particular gene can vary widely. Organisms that are closely related will have sequences that are similar. Below is a list of sequences for a few organisms:

Human	CCA TAG CAC CTA
Pig	CCA TGG AAA CGA
Chimpanzee	CCA TAA CAC CTA
Cricket	CCT AAA GGG ACG

- 5. Based on the sequences, which two organisms are most closely related?
- 6. An unknown organism is found in the forest, and the gene is sequenced, and found to be: CCATGGAATCGA, What kind of animal do you think this is?

DNZ RNA	<u>\</u>	
U	A	
U	т	
A	С	

Second Position

	U	с	А	G	
υ	UUU] Phe UUC] Leu UUA] Leu	UCU UCC UCA UCG	UAU] Tyr UAC Stop UAG Stop	UGU] Cys UGC <i>Stop</i> UGA <i>Stop</i> UGG Trp	UCAG
с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU] His CAC] GIn CAG] GIn	CGU CGC CGA CGG	UCAG
A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU] Asn AAC] Lys AAG] Lys	AGU] Ser AGC] Arg AGA] Arg	DCAG
G	GUU GUC GUA GUG	GCU GCC GCA GCG Ala	GAU] Asp GAC] GAD GAA] Glu GAG] Glu	GGU GGC GGA GGG	UC∢G

First Position (5' end)

Third Position (3' end)